Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2-Aminoanilinium phosphite

Abdallah Khaoulana Idrissi, ${ }^{\text {a }}$ Mohamed Saadi, ${ }^{\text {b }}$ Mohamed Rafiq ${ }^{\text {a }}$ and Elizabeth M. Holt ${ }^{\text {c* }}$

áLaboratoire des Matériaux et Protection de l'Environnement, Faculté des Sciences, Fes, Morocco, ${ }^{\mathbf{b}}$ Laboratoire de Chimie de Coordination et Analytique, Faculté des Sciences, El Jadida, Morocco, and ${ }^{\text {c }}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Correspondence e-mail: betsy@biochem.okstate.edu
Received 13 June 2002
Accepted 23 August 2002
Online 30 September 2002
The solid-state structure of the title compound, alternatively called 2-aminoanilinium hydrogen phosphonate, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+}$.$\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$, shows the monoprotonated diamine molecule to be multiply hydrogen bonded to $\mathrm{HPO}_{3} \mathrm{H}^{-}$anions. There is no inter-phosphite hydrogen bonding, contrary to previous solidstate observations of the species.

Comment

Dihydrogen phosphite $\left(\mathrm{HPO}_{3} \mathrm{H}_{2}\right)$ has been observed in the solid state both in its monoanionic and dianionic forms. There have been observations of the doubly deprotonated form $\left(\mathrm{HPO}_{3}{ }^{2-}\right)$ with metallic cations in $\mathrm{Mg}\left(\mathrm{HPO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Corbridge, 1956), $\mathrm{Na}_{2}\left(\mathrm{HPO}_{3}\right) \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Colton \& Henn, 1971), $\mathrm{Cu}\left(\mathrm{HPO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Handlovič, 1969), $\mathrm{Al}_{2}\left(\mathrm{HPO}_{3}\right)_{3} \mathrm{Ga}_{2}\left(\mathrm{HPO}_{3}\right)_{3}$ (Morris et al., 1994) and $\mathrm{Ga}_{2}\left(\mathrm{HPO}_{3}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Morris et al., 1992). The single known structure of an organic cation and $\mathrm{HPO}_{3}{ }^{2-}$ is $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{HPO}_{3}\right) \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Rafiq et al., 1982). The monoanionic form has been observed in the solid state with metallic cations in $\mathrm{Ca}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Larbot et al., 1984), $\mathrm{Cd}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Loub et al., 1978), $\mathrm{Nd}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Loukili et al., 1988), $\mathrm{Fe}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{3}$ (Sghyar et al., 1991) and $\mathrm{Zn}\left(\mathrm{HPO}_{3} \mathrm{H}\right)_{2} \cdot 0.333 \mathrm{H}_{2} \mathrm{O}$ (Durand et al., 1992), and with organic cations in isopropyl ammonium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(AverbuchPouchot, 1993a), anilinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(Adrissi et al., 2000), and glycinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$and glycylglycinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(AverbuchPouchot, 1993b). The organic examples show the two different types of hydrogen bonding possible in the solid state. In isopropyl ammonium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(Averbuch-Pouchot, 1993a), glycinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$and glycylglycinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(AverbuchPouchot, 1993b), the monoanions are linked in a polymeric chain by hydrogen bonding. In anilinium $\mathrm{HPO}_{3} \mathrm{H}^{-}$(Adrissi et al., 2000), the phosphite groups are hydrogen bonded in pairs which resemble the doubly hydrogen-bonded pairs normally observed in carboxylic acid species. In both arrangements, ammonium groups serve as hydrogen-bond donors in additional hydrogen bonding. We have examined the solid-state structure of the salt of the monoanionic form of $\mathrm{HPO}_{3} \mathrm{H}_{2}$ with
o-phenylenediamine, (I), and find that contrary to previous observations, there is no hydrogen bonding between the $\mathrm{HPO}_{3} \mathrm{H}^{-}$anions.

(I)

The H atom on the phosphite O 1 atom is donated to the amino group, H11 $\cdots \mathrm{N} 2$. The ammonium group of the 2 -aminoanilinium species serves as a donor to the remaining phosphite O atoms, viz. $\mathrm{H} 1 A \cdots \mathrm{O} 3, \mathrm{H} 1 B \cdots \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{H} 1 C \cdots \mathrm{O} 2^{\mathrm{ii}}$ (see Table 2 for details). The two H atoms of the amino group are similarly involved in hydrogen bonding to these O atoms; $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 3$ (Fig. 1). The packing shows an alternation of the cationic and anionic species on planes perpendicular to the c direction. Other structural details are normal. However, the average $\mathrm{C}-\mathrm{C}$ distance in the

Figure 1
The hydrogen bonding in $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$. Displacement ellipsoids are shown at the 50% probability level.

Figure 2
Projection on the (001) plane of the packing of $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$in the unit cell showing the alternation of $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+}$and $\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$moieties.
phenyl ring is $1.36 \AA$ and the C5-C6 distance is 1.346 (5) \AA. The reason for these deviations from the expected values of $1.395 \AA$ is unclear. Bond lengths (Table 1) reveal the protonated O 1 atom to have a longer $\mathrm{P}-\mathrm{O}$ bond $[1.534(2) \AA]$ than both $\mathrm{P} 1-\mathrm{O} 2$ [1.461 (3) \AA] and $\mathrm{P} 1-\mathrm{O} 3$ [1.471 (2) \AA], which are of similar length as a result of delocalization of the negative charge between them. The $\mathrm{C}-\mathrm{NH}_{3}{ }^{+}$bond [1.422 (4) \AA] is longer than the $\mathrm{C}-\mathrm{NH}_{2}$ bond [1.384 (4) \AA], as predicted by charge considerations.

Experimental

A single crystal of the title salt was prepared by slow evaporation of a 1:1 aqueous solution of phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ and 1,2 -diaminobenzene.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$
$M_{r}=190.14$
Monoclinic, $P 2_{1} / c$
$a=11.212$ (8) \AA
$b=5.992$ (5) \AA
$c=13.204$ (14) \AA
$\beta=110.16$ (3) ${ }^{\circ}$ 。
$V=832.7(13) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ four-circle diffractometer
$\theta-2 \theta$ scans
2306 measured reflections
1672 independent reflections
1359 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.066$

$$
\begin{aligned}
& D_{x}=1.517 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=4.1-9.3^{\circ} \\
& \mu=0.30 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.1 \times 0.1 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=26.4^{\circ} \\
& h=-14 \rightarrow 1 \\
& k=-7 \rightarrow 1 \\
& l=-15 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.059$
$w R\left(F^{2}\right)=0.167$
$S=0.91$
1672 reflections
111 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{P} 1-\mathrm{O} 1$	$1.534(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.370(4)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.461(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.365(4)$
$\mathrm{P} 1-\mathrm{O} 3$	$1.471(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.352(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.422(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.352(5)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.384(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.346(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.359(4)$		
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$111.72(12)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$121.3(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	$107.12(13)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$121.0(3)$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	$117.08(14)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.0(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120.9(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.6(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$120.4(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$118.5(3)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.4(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.6(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{O} 3$	0.90	1.84	$2.690(3)$	157
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 3^{\mathrm{i}}$	0.90	1.90	$2.741(4)$	155
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.90	1.79	$2.669(4)$	164
N2-H2A $\cdots \mathrm{O}^{\mathrm{iii}}$	0.90	1.96	$2.855(4)$	172
N2-H2B $\cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.22	$3.061(4)$	156
$\mathrm{O}_{1}-\mathrm{H} 11 \cdots \mathrm{~N} 2^{\text {iv }}$	0.85	1.88	$2.719(4)$	168

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (iv)
$x, \frac{1}{2}-y, \frac{1}{2}+z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1382). Services for accessing these data are described at the back of the journal.

References

Adrissi, A. K., Saadi, M. \& Rafiq, M. (2000). Ann. Chim. Sci. Mater. 25, S121S124.
Averbuch-Pouchot, M.-T. (1993a). Acta Cryst. C49, 813-815.
Averbuch-Pouchot, M.-T. (1993b). Acta Cryst. C49, 815-818.
Colton, R. H. \& Henn, D. E. (1971). J. Chem. Soc. A, pp. 1207-1209.
Corbridge, D. E. C. (1956). Acta Cryst. 9, 991-994.
Durand, J., Cot, L., Sghyar, M. \& Rafio, R. (1992). Acta Cryst. C48, 1171-1173.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Handlovič, M. (1969). Acta Cryst. B25, 227-231.
Larbot, A., Durand, J. \& Cot, L. (1984). Z. Anorg. Allg. Chem. 508, 154-158.
Loub, J., Podlahova, J. \& Jecny, J. (1978). Acta Cryst. B34, 32-34.
Loukili, M., Durand, J., Cot, L. \& Rafiq, M. (1988). Acta Cryst. C44, 6-8.
Morris, R. E., Attfield, M. P. \& Cheetham, A. K. (1994). Acta Cryst. C50, 473476.

Morris, R. E., Harrison, W. T. A., Wilkinson, A. P., Nicol, J. M. \& Cheetham, A. K. (1992). Nature (London), 359, 519-522.

Rafiq, M., Durand, J. \& Cot, L. (1982). Z. Anorg. Allg. Chem. 484, 187-194.
Sghyar, M., Durand, J., Cot, L. \& Rafiq, M. (1991). Acta Cryst. C47, 8-10.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

